Research

How different could life be? Instead of copying life as we know it, I seek to engineer synthetic cells featuring completely new ways of assembly, information propagation and replication. Thereby, it will be possible to probe boundary conditions of life and, from a practical point of view, to build new interfaces between natural and synthetic cells. Bioorthogonal synthetic cells will be applicable as biocompatible active probes ('phantom cells') inside living tissues and organisms, capable of sensing the cellular environment, computing and executing a response.

Publications

 

Microfluidic formation of single- and multicompartment systems. 

 

By tailoring the charge density at the interface of microfluidic droplets, we control the transition between multicompartment systems and GUVs:

Haller, B. Göpfrich, K., Schröter, M., Janiesch, J.-W., Platzman, I. & Spatz, J. P. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab on a Chip (2018).

https://doi.org/10.1039/C8LC00582F

 

 Cover image Trends in Biotechnology

 

In our review, we discuss how microfluidics and DNA nanotechnology can be used to assemble multifunctional synthetic cells. 

Göpfrich, K., Platzman, P. & Spatz, J. P. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends in Biotechnology (2018). 

Watch a short video about our review here.

https://doi.org/10.1016/j.tibtech.2018.03.008

 

 Credit: C. Maffeo

 

We demonstrate that DNA-based membrane pores can flip lipids from one bilayerleaflet to the other. 

Ohmann, A., Li, C.-Y., Maffeo, C., Al Nahas, K., Baumann, K.N., Göpfrich, K., Yoo, J., Keyser, U.F., Aksimentiev, A. Outperforming nature: synthetic enzyme built from DNA flips lipids of biological membranes at record rates. Nature Communications (2018). 

https://doi.org/10.1038/s41467-018-04821-5

 

During my PhD with Prof. Ulrich F. Keyser, I used DNA to build synthetic membrane pores - from small ion channels to large porins. I thank Gates Cambridge, the Winton Programme for the Physics of Sustainability and the Oppenheimer Trust for their generous support. 

Göpfrich, K., Rational Design of DNA-Based Lipid Membrane Pores. PhD Thesis (2017). 

https://doi.org/10.17863/CAM.15517

 

 

We built the largest man-made pore in lipid membranes to date:

Göpfrich, K., Li, C.-Y., Ricci, M., Bhamidimarri, S. P., Yoo, J., Gyenes, B., Ohmann, A., Winterhalter, M., Aksimentiev, A., Keyser, U. F., Large-Conductance Transmembrane Porin Made from DNA Origami. ACS Nano (2016). 

http://pubs.acs.org/doi/abs/10.1021/acsnano.6b03759

 

 

We demonstrated the formation of stable DNA-lipid pores induced by a single transmembrane-spanning DNA duplex:

Göpfrich, K., Li, C.-Y., Mames, I., Bhamidimarri, S. P., Ricci, M., Yoo, J., Mames, A., Ohmann, A., Winterhalter, M., Stulz, E., Aksimentiev, A. & Keyser, U. F. (2016). Ion channels made from a single membrane-spanning DNA duplex. Nano Letters.

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02039

 

 

We study transitions from bound to unbound cluster growth using computational models and DNA-tile self-assembly experiments:

Tesoro, S., Göpfrich, K., Kartanas, T., Keyser, U. F., & Ahnert, S. E. (2016). Non-deterministic self-assembly with asymmetric interactions can lead to tunable self-limiting cluster growth. Physical Review E.

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.022404

 

 

We created the smallest membrane-inserting DNA nanostructure to date, approaching the dimensions of natural ion channels:

Göpfrich, K., Zettl, T., Meijering, A. E. C., Hernández-Ainsa, S., Kocabey, S., Liedl, T. & Keyser, U. F. (2015). DNA-tile structures lead to ionic currents through lipid membranes. Nano Lett., 15(5), 3134–3138. 

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b00189

Read my blog post about the article here.

 

 

DNA-based membrane pores exhibit voltage-dependant conductance states reminiscent of gating observed for natural membrane pores:

Seifert, A.*, Göpfrich, K.*, Burns, J. R., Fertig, N., Keyser, U. F. & Howorka, S. (2014). Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano, 9(2), 1117–1126 (*equal contribution).

http://pubs.acs.org/doi/abs/10.1021/nn5039433

 

 

Just two porphyrin-tags anchor a simple DNA nanopore in the lipid membrane and serves as fluorescent dyes at the same time:

Burns, J. R., Göpfrich, K., Wood, J. W., Thacker, V. V, Stulz, E., Keyser, U. F. & Howorka, S. (2013). Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed., 52(46), 12069–72.

http://onlinelibrary.wiley.com/doi/10.1002/anie.201305765/abstract

 

We control DNA transport through DNA origami nanopores by varying the pore size and the binding strength:

Hernández-Ainsa, S., Bell, N. A. W., Thacker, V. V, Göpfrich, K., Misiunas, K., Fuentes-Perez, M. E., Moreno-Herrero, F. & Keyser, U. F. (2013). DNA origami nanopores for controlling DNA translocation. ACS Nano, 7(7), 6024–30.

http://pubs.acs.org/doi/abs/10.1021/nn401759r

 

The frequency of DNA translocation through the protein nanopore alpha-hemolysin is significantly enhanced at pH 6 compared to pH 8:

Göpfrich, K., Kulkarni, C. V, Pambos, O. J. & Keyser, U. F. (2013). Lipid nanobilayers to host biological nanopores for DNA translocations. Langmuir, 29(1), 355–364.

http://pubs.acs.org/doi/abs/10.1021/la3041506

 

 

Pambos, O. J., Göpfrich, K., Mahendran, R., Gornall, J. L., Otto, O., Steinbock, L. J., Chimerel, C., Winterhalter, M. & Keyser, U. F. (2012). Towards simultaneous force and resistive pulse sensing in protein nanopores using optical tweezers. RSC Proceedings, 72-75.

http://pubs.rsc.org/en/content/chapter/bk9781849734165-00072/978-1-84973-416-5