During my PhD with Prof. Ulrich F. Keyser, I used DNA to build synthetic membrane pores - from small ion channels to large porins. I thank Gates Cambridge, the Winton Programme for the Physics of Sustainability and the Oppenheimer Trust for their generous support. 

Göpfrich, K., Rational Design of DNA-Based Lipid Membrane Pores. PhD Thesis (2017).



We built the largest man-made pore in lipid membranes to date:

Göpfrich, K., Li, C.-Y., Ricci, M., Bhamidimarri, S. P., Yoo, J., Gyenes, B., Ohmann, A., Winterhalter, M., Aksimentiev, A., Keyser, U. F., Large-Conductance Transmembrane Porin Made from DNA Origami. ACS Nano (2016).



We demonstrated the formation of stable DNA-lipid pores induced by a single transmembrane-spanning DNA duplex:

Göpfrich, K., Li, C.-Y., Mames, I., Bhamidimarri, S. P., Ricci, M., Yoo, J., Mames, A., Ohmann, A., Winterhalter, M., Stulz, E., Aksimentiev, A. & Keyser, U. F. (2016). Ion channels made from a single membrane-spanning DNA duplex. Nano Letters.



We study transitions from bound to unbound cluster growth using computational models and DNA-tile self-assembly experiments:

Tesoro, S., Göpfrich, K., Kartanas, T., Keyser, U. F., & Ahnert, S. E. (2016). Non-deterministic self-assembly with asymmetric interactions can lead to tunable self-limiting cluster growth. Physical Review E.



We created the smallest membrane-inserting DNA nanostructure to date, approaching the dimensions of natural ion channels:

Göpfrich, K., Zettl, T., Meijering, A. E. C., Hernández-Ainsa, S., Kocabey, S., Liedl, T. & Keyser, U. F. (2015). DNA-tile structures lead to ionic currents through lipid membranes. Nano Lett., 15(5), 3134–3138.

Read my blog post about the article here.



DNA-based membrane pores exhibit voltage-dependant conductance states reminiscent of gating observed for natural membrane pores:

Seifert, A.*, Göpfrich, K.*, Burns, J. R., Fertig, N., Keyser, U. F. & Howorka, S. (2014). Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano, 9(2), 1117–1126 (*equal contribution).



Just two porphyrin-tags anchor a simple DNA nanopore in the lipid membrane and serves as fluorescent dyes at the same time:

Burns, J. R., Göpfrich, K., Wood, J. W., Thacker, V. V, Stulz, E., Keyser, U. F. & Howorka, S. (2013). Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed., 52(46), 12069–72.


We control DNA transport through DNA origami nanopores by varying the pore size and the binding strength:

Hernández-Ainsa, S., Bell, N. A. W., Thacker, V. V, Göpfrich, K., Misiunas, K., Fuentes-Perez, M. E., Moreno-Herrero, F. & Keyser, U. F. (2013). DNA origami nanopores for controlling DNA translocation. ACS Nano, 7(7), 6024–30.


The frequency of DNA translocation through the protein nanopore alpha-hemolysin is significantly enhanced at pH 6 compared to pH 8:

Göpfrich, K., Kulkarni, C. V, Pambos, O. J. & Keyser, U. F. (2013). Lipid nanobilayers to host biological nanopores for DNA translocations. Langmuir, 29(1), 355–364.



Pambos, O. J., Göpfrich, K., Mahendran, R., Gornall, J. L., Otto, O., Steinbock, L. J., Chimerel, C., Winterhalter, M. & Keyser, U. F. (2012). Towards simultaneous force and resistive pulse sensing in protein nanopores using optical tweezers. RSC Proceedings, 72-75.