Research

I thank Gates Cambridge, the Winton Programme for the Physics of Sustainability and the Oppenheimer Trust for their generous support during my PhD.

Publications

 

 

We built the largest man-made pore in lipid membranes to date:

Göpfrich, K., Li, C.-Y., Ricci, M., Bhamidimarri, S. P., Yoo, J., Gyenes, B., Ohmann, A., Winterhalter, M., Aksimentiev, A., Keyser, U. F., Large-Conductance Transmembrane Porin Made from DNA Origami. ACS Nano (2016). 

http://pubs.acs.org/doi/abs/10.1021/acsnano.6b03759

 

 

We demonstrated the formation of stable DNA-lipid pores induced by a single transmembrane-spanning DNA duplex:

Göpfrich, K., Li, C.-Y., Mames, I., Bhamidimarri, S. P., Ricci, M., Yoo, J., Mames, A., Ohmann, A., Winterhalter, M., Stulz, E., Aksimentiev, A. & Keyser, U. F. (2016). Ion channels made from a single membrane-spanning DNA duplex. Nano Letters.

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b02039

 

 

We study transitions from bound to unbound cluster growth using computational models and DNA-tile self-assembly experiments:

Tesoro, S., Göpfrich, K., Kartanas, T., Keyser, U. F., & Ahnert, S. E. (2016). Non-deterministic self-assembly with asymmetric interactions can lead to tunable self-limiting cluster growth. Physical Review E.

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.022404

 

 

We created the smallest membrane-inserting DNA nanostructure to date, approaching the dimensions of natural ion channels:

Göpfrich, K., Zettl, T., Meijering, A. E. C., Hernández-Ainsa, S., Kocabey, S., Liedl, T. & Keyser, U. F. (2015). DNA-tile structures lead to ionic currents through lipid membranes. Nano Lett., 15(5), 3134–3138. 

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b00189

Read my blog post about the article here.

 

 

DNA-based membrane pores exhibit voltage-dependant conductance states reminiscent of gating observed for natural membrane pores:

Seifert, A.*, Göpfrich, K.*, Burns, J. R., Fertig, N., Keyser, U. F. & Howorka, S. (2014). Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS Nano, 9(2), 1117–1126 (*equal contribution).

http://pubs.acs.org/doi/abs/10.1021/nn5039433

 

 

Just two porphyrin-tags anchor a simple DNA nanopore in the lipid membrane and serves as fluorescent dyes at the same time:

Burns, J. R., Göpfrich, K., Wood, J. W., Thacker, V. V, Stulz, E., Keyser, U. F. & Howorka, S. (2013). Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew. Chem. Int. Ed., 52(46), 12069–72.

http://onlinelibrary.wiley.com/doi/10.1002/anie.201305765/abstract

 

We control DNA transport through DNA origami nanopores by varying the pore size and the binding strength:

Hernández-Ainsa, S., Bell, N. A. W., Thacker, V. V, Göpfrich, K., Misiunas, K., Fuentes-Perez, M. E., Moreno-Herrero, F. & Keyser, U. F. (2013). DNA origami nanopores for controlling DNA translocation. ACS Nano, 7(7), 6024–30.

http://pubs.acs.org/doi/abs/10.1021/nn401759r

 

The frequency of DNA translocation through the protein nanopore alpha-hemolysin is significantly enhanced at pH 6 compared to pH 8:

Göpfrich, K., Kulkarni, C. V, Pambos, O. J. & Keyser, U. F. (2013). Lipid nanobilayers to host biological nanopores for DNA translocations. Langmuir, 29(1), 355–364.

http://pubs.acs.org/doi/abs/10.1021/la3041506

 

 

Pambos, O. J., Göpfrich, K., Mahendran, R., Gornall, J. L., Otto, O., Steinbock, L. J., Chimerel, C., Winterhalter, M. & Keyser, U. F. (2012). Towards simultaneous force and resistive pulse sensing in protein nanopores using optical tweezers. RSC Proceedings, 72-75.

http://pubs.rsc.org/en/content/chapter/bk9781849734165-00072/978-1-84973-416-5